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Abstract: Estimating flow resistance is essential for the hydraulic analysis of a river and the evaluation of conveyance in a specific flow
condition. Under bed-load transport conditions, the resistance to the flow in an open channel is different from fixed-bed condition and
requires a distinct method for its evaluation. The geometric and hydraulic parameters influence flow resistance characteristics in the mobile
bed load. In the present study, a wide range of experimental flume data sets are investigated to derive the dependency of the dimensionless
parameters on the flow resistance under mobile bed-load conditions. The five most important dimensionless parameters, such as relative
submergence depth, bed slope, aspect ratio, Reynolds number, and Froude number, are suggested because they show a unique relationship to
the dependent parameter. An artificial neural network (ANN) model to predict the flow resistance is proposed by considering these inde-
pendent parameters as the input parameters. To verify the strength of the model, the performances of previous researchers’ models were also
evaluated and compared with the present work by considering a wide range of data sets. It is found that the previous models can be used for a
specific range of data sets only, whereas the proposed ANN-based model is capable of performing well for a wide range of geometric and
hydraulic conditions of a channel. DOI: 10.1061/(ASCE)HE.1943-5584.0002085. © 2021 American Society of Civil Engineers.
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Introduction

Investigating the effect of moving bed load on flow parameters of
an open-channel flow has gained importance in the last few dec-
ades. The bed load consists of various sediment particles resting
at the bed and are intermittently entrained in the turbulent water flow.
While carried along the direction of flow, these are deposited a short
distance downstream of the channel. The transport of bed load de-
pends on the flow strength and size and density of the sediment par-
ticles. Smaller and lighter sediment particles are more likely to be
carried for longer distances, while larger or denser particles will fall
through the flow. Thus, the movement of bed load is caused by roll-
ing, sliding, and saltation of grains along the bed. Sediments, in turn,
offer resistance to flow, causing its retardation. In the case of open-
channel flow with a rigid boundary, the resistance is specified by a
constant roughness coefficient, and a resistance formula can be ap-
plied directly for the computation of flow parameters. But in the case
of a mobile bed, the flow resistance is influenced both by grain or
skin friction, and the traditional resistance formula cannot be applied
directly without knowing how the resistance coefficient will change
under different flow and sediment conditions.

Many researchers have explained the effect of bed-load trans-
port in terms of the extra resistance caused by bedforms. The direct
impact of the bed load on flow resistance for different bed slope
conditions was reported by Bathurst et al. (1982). Wiberg and
Rubin (1989) observed that the flow resistance associated with bed-
load transport conditions could reach much higher values than
those observed with fixed-bed conditions. Song et al. (1998) ob-
served that the bed-load movement that increases the flow resis-
tance depends on the volumetric sediment concentration of the
bed load and the size of the moving particles. Carbonneau and
Bergeron (2000) observed the wakes that shed as particles are ac-
celerated by the strength of flow and produce a layer of roughness
that develops well past the highest point of the saltation layer, af-
fecting the mean velocity profile. Hu and Abrahams (2004) ob-
served that the friction factor due to the bed-load movement
could be 22.06% of total resistance and reported that flow resis-
tance is affected by factors such as sediment concentration, relative
submergence depth, particle diameter, bed slope, and Froude num-
ber. Gao and Abrahams (2004) considered their experimental data
as well as that of Song et al. (1998). They observed that the sedi-
ment concentration, relative roughness, and dimensionless particle
size are the factors that influence the flow resistance. Hu and
Abrahams (2005) investigated that bed-load grains colliding with
mobile beds lose more momentum to the bed than grains colliding
with fixed beds. They concluded that the resistance due to flow in a
moving bed load becomes higher than that in fixed beds. Recking
et al. (2008) reported that friction factor f increases with the sedi-
ment concentration in mobile bed conditions. Kumar (2011) inves-
tigated the flow resistance in alluvial channels and developed
an equation for friction factor by analyzing its dependency on
Reynolds and Froude numbers along with particle relative rough-
ness. Omid et al. (2010) investigated the effect of bed-load trans-
port on flow resistance of alluvial channels experimentally by
varying the particle size. They observed that transport of fine par-
ticles could decrease the friction factor by 22% and 24% for smooth
and rough beds, respectively. Ferro (2018) calibrated the model
parameters of flow velocity, water depth, and bed slope of the
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experimental data of Recking (2006) and performed the dimen-
sional analysis to obtain an equation for flow resistance. Hou et al.
(2019) conducted experiments in steep gradient channels with vari-
ous particle sizes. They found that the flow resistance decreases
with an increase in Froude number (Fr) and inversely with longi-
tudinal bed slope. From the different investigations, it is seen that
the flow resistance of a bed-load channel is increased, decreased, or
unchanged due to different sizes of bed-load materials, bed slope,
and turbulent flow properties over a mobile bed that differ signifi-
cantly from those over a fixed bed (Campbell et al. 2005). There-
fore, it can be stated that the resistance to flow in the mobile
bed-load condition depends strongly on both the flow conditions
and bed-load particles (Garcia 2008). The traditional resistance for-
mula cannot be applied directly without knowing how the resis-
tance coefficient will change under different flow and sediment
conditions (Yang and Lim 2003). Besides, bed load forms a layer
that alters the roughness height of bed particles, while suspended
load may affect turbulence, and hence flow resistance. Many re-
searchers have analyzed flow conditions over the mobile bed for
gravel bed streams and proposed equations for Darcy-Weisbach
friction factor f for limited geometrical and hydraulic conditions.
Therefore, reliable modeling of the roughness coefficient for a wide
range of flow conditions is necessary for evaluating the conveyance
and the hydraulic analysis of streams.

The objective of the present work is to evaluate the flow resis-
tance of a gravel bed channel by analyzing its dependencies on the
five most influential dimensionless parameters derived from the
dimensional analysis of important variables pertaining to flow in
movable bed conditions. Using these dimensionless terms, an ar-
tificial neural network (ANN) model is also proposed to predict
the flow resistance. The five influential parameters considered as
input have shown reasonable nonlinear relationships with the fric-
tion factor individually. Model performances of previous research-
ers were also tested and compared with the strength of the present
model considering a wide range of data sets. Because the previous
models are valid for a specific range of data sets, it is confirmed
from the statistical analysis that the proposed ANN-based model
is capable of performing well for a wide range of geometric and
hydraulic conditions of a gravel bed channel. The study provides
an improved flow resistance prediction.

Methodology

The flow resistance equation for computing friction factor f appli-
cable to the condition of uniform flow in an open channel is rep-
resented in the following form:

ffiffiffi
8

f

s
¼ Uffiffiffiffiffiffiffiffiffiffiffi

gRSo
p ¼ U

u�
ð1Þ

where f = friction factor; u� = shear velocity defined as u� ¼ffiffiffiffiffiffiffiffiffiffiffi
gRSo

p ¼ ffiffiffiffiffiffiffiffiffiffi
τo=ρ

p
, where τo is the boundary shear stress; ρ = den-

sity of water; U = mean velocity; R = hydraulic radius; g = accel-
eration due to gravity; and So = longitudinal slope of the bed.

Without bed-load transport conditions where turbulence is fully
developed, Keulegan (1938) proposed a logarithmic model and ex-
pressed the friction factor in terms of relative submergence depth
ðR=DÞ as

ffiffiffi
8

f

s
¼ 6.25þ 5.75 log

�
R
D

�
ð2Þ

Manning (1891) and Meyer-Peter and Müller (1948) studied the
importance of grain resistance for moving bed load and defined the
expression for velocity as

u ¼ KsR2=3S1=20 ð3Þ
where Ks = grain characteristics for bed roughness, defined as

Ks ¼
21.1

D1=6 ð4Þ

The formulation for friction law was given asffiffiffi
8

f

s
¼ U

u�
¼ 6.75

�
R
D

�
1=6

ð5Þ

Cao (1985) conducted experiments in a 0.6-m-wide flume for
slopes from 0.5% to 9% in moving bed-load conditions with
44-, 22-, and 11-mm grain diameter. The friction law formulation
was proposed as ffiffiffi

8

f

s
¼ 3.75þ 5.91 log

�
R
D

�
ð6Þ

Recking (2006) conducted experiments in a flume by varying
longitudinal slope from 1% to 9% and friction factor f was found
under equilibrium condition of bed-load transport over uniformly
sized gravel particles having a mean particle diameter of 2.3, 4.9, 9,
and 12.5 mm. He identified three regimes: no bed-load transport,
low bed-load transport, and high bed-load transport. Characteriza-
tion of each regime was done by distinct friction law as observed in
the difference in the movement pattern of sediment particles. He
observed that in Regime 1 when no sediment transport,

ffiffiffiffiffiffiffiffi
8=f

p
in-

creases with ðR=DÞ; in Regime 2, bed load appears and
ffiffiffiffiffiffiffiffi
8=f

p
is

constant; and in Regime 3 both bed load and
ffiffiffiffiffiffiffiffi
8=f

p
increase with

ðR=DÞ. In the study, different flow resistance equations were
reviewed for a wide range of flow conditions, and a logarithmic
friction model was proposed for two different ranges of relative
submergence depth ðR=DÞ asffiffiffi

8

f

s
¼ −1þ 9.5 log

�
R
D

�
for

R
D

< 16.9 ð7Þ

ffiffiffi
8

f

s
¼ 3.6þ 5.75 log

�
R
D

�
for

R
D

> 16.9 ð8Þ

Julien (2002) proposed the logarithmic friction model for find-
ing the friction factor asffiffiffi

8

f

s
¼ 5.75 log

�
2R
D

�
ð9Þ

Recking et al. (2008) fitted logarithmic functions to data sets of
Recking (2006) and obtained two distinct formulations for flow
condition without and with bed-load transport asffiffiffi

8

f

s
¼ 3.6þ 3.2ln

�
R
D

�
for flowswithout bed load ð10Þ

ffiffiffi
8

f

s
¼ 0.67þ 3.2ln

�
R
D

�
for flowswith bed load ð11Þ
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The friction factor formulation by analytical means is difficult
because the interactions between sediment transport, bedform, and
flow properties are very complicated processes. Most of the pre-
vious flow resistance equations use only a single dimensionless
parameter, i.e., relative submergence depth. However, the previous
investigations show that the flow resistance is influenced by several
other factors such as the relative submergence depth, bed slope,
aspect ratio, Reynolds number, and Froude number. Considering
the preceding points of view, in the present study, a wide range
of experimental data sets were investigated to observe these dimen-
sionless parameters’ effects on the flow resistance in case of flow in
a mobile bed channel. The flow investigations suggest that flow
variables such as velocity, hydraulic radius, viscosity, longitudinal
slope, flow depth, channel width, sediment particle size, density of
water, and gravitational force are important for determining the
flow resistance in movable bed-load condition and thus the friction
factor f can be represented as

f ¼ function of ðU;R;μ; So;D;W;H;D; ρ; gÞ ð12Þ
where U = mean velocity of flow; So = longitudinal bed slope; R =
hydraulic radius; μ = dynamic viscosity; ρ = density of water; D =
mean diameter of the particle; W = width; H = depth of flow; and
g = acceleration due to gravity.

From dimensional analysis, these flow variables can be re-
duced to a set of five important dimensionless terms: (1) R=D =
relative submergence height; (2) U=

ffiffiffiffiffiffi
gR

p ¼ Fr (Froude number);
(3) ðρURÞ=μ = Re (Reynolds number); (4) So = bed slope; and
(5) W=H ¼ δ (aspect ratio). Thus, the previous functional relation
can be expressed as

f ¼ function of

�
R
D
;Fr;Re; δ; So

�
ð13Þ

Flow in an open channel is affected by force due to gravity and
is generally turbulent, hence the effect of Froude number Fr and
Reynolds number Re is taken into consideration.

It has been observed that the existing empirical equations of
flow resistance of a mobile bed channel generally use one dimen-
sionless parameter, i.e., relative submergence height ðR=DÞ, to es-
timate flow resistance in the form of friction factor. In the present
study, other important, influential flow parameters were also con-
sidered to develop a new flow resistance model. The model is de-
veloped using the wide ranges of experimental data sets of various
researchers. The results of the model were compared with that of
previous researchers. To achieve this, different types of statistical
indicators, such as the mean absolute percentage error (MAPE),
mean absolute error (MAE), mean percentage error (MPE), root-
mean-square error (RMSE), percent bias (PBIAS), Kling-Gupta
efficiency (KGE), and index of agreement (Id), were computed
as given in Eqs. (14)–(20). This statistical analysis facilitates the
comparison of previous models with the proposed ANN model
and evaluates the acceptability of each of the models concerning
the ranges of data sets

MAPE ¼ 100

N

XN
i¼1

����Oi − Pi

Pi

���� ð14Þ

MAE ¼ 1

N

XN
i¼1

jOi − Pij ð15Þ

MPE ¼ 100

N

XN
i¼1

�
Oi − Pi

Ai

�
ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðOi − PiÞ2

N

r
ð17Þ

PBIAS ¼ 100

P
N
i¼1ðPi −OiÞP

N
i¼1 Oi

ð18Þ

KGE ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − 1Þ2 þ ðα − 1Þ2 þ ðβ − 1Þ2

q
ð19aÞ

where r = linear correlation between observed and predicted values;
α = measure of the flow variability error; and β = bias term, as de-
fined as follows:

r ¼
P

N
i¼1 PiOi − nPi Oiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPN
i¼1 P

2
i − nPi

2Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPN
i¼1 O

2
i − nOi

2
q

Þ
;

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPN

i¼1 Pi − PiÞ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPN

i¼1 Oi −OiÞ2
q ; β ¼ Pi

Oi
ð19bÞ

Id ¼ 1 −
P

N
i¼1 ðOi − PiÞ2P

N
i¼1 ðjOi −Oij þ jPi −OijÞ2

ð20Þ

where Oi,Oi, Pi, Pi, and N = observed value, mean of the observed
value, predicted value, mean of the predicted value, and number of
samples, respectively.

Source of the Data Set

The present study includes 1,269 laboratory flume data sets, with
various hydraulic and geometric parameters measured in equilib-
rium mobile bed-load condition as detailed in Recking (2006). The
data sets undertaken in this study were selected using the screening
criteria of bed slope equal to more than 0.1%, no suspension, and
absence of bedforms. The different flow conditions for these data
sets are tabulated in Appendix I. Gilbert (1914) did an experimental
study and provided 311 data sets in a straight channel by varying
the grain size diameter on different channel dimensions and chang-
ing the bed slope. Cassey (1935) carried out 78 experimental ob-
servations on single-channel geometry by varying the bed slope and
grain size. A total of 261 combinations of experimental observa-
tions were undertaken by Mavis (1937) for five different grain size
diameters on the same channel width for different variations of bed
slope. Bogardi and Yen (1939) performed 44 experimental obser-
vations for a mobile bed for various channel widths, slopes, and bed
materials. Yang (1939) and Meyer-Peter and Müller (1948) carried
out 71 and 105 observations of mobile bed-load conditions, respec-
tively. For the same density of solid particles, Einstein (1955) and
Paintal (1971) carried out 15 and 37 sets of experimental observa-
tions, respectively, by varying the slope of the channel for different
bed materials of bed-load condition. Smart and Jaeggi (1983) con-
ducted 60 experiments of mobile bed load on one channel width by
varying the slope for three conditions of grain size. Rickenman
(1990) showed 46 more experiments with similar parameters as
those by Smart and Jaeggi (1983), but for different channel slopes.
Cao (1985) and Graf and Suszuka (1987) performed 56 and 106
experiments, respectively, on a channel with a width of 0.6 m
by varying the slope for different bed materials for mobile bed con-
ditions. Recking (2006) performed an experimental study on 79
different geometric and hydraulic conditions and even analyzed the
experimental works of various other researchers. For measurement
of velocity, Smart and Jaeggi (1983), Cao (1985), and Rickenmann
(1991) used the salt velocity technique. Recking (2006) used an
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image analysis technique and achieved a maximum error of 1.5%
on the velocity calculation for the considered flow conditions.
Appendix II presents the range for the various influencing dimen-
sionless terms derived from the experimental data sets.

Selection of Influencing Dimensionless Terms

Awide range of data sets facilitate the analysis to observe the effect
of various parameters on the friction factor. To ascertain the distinct
effects of each of five selected dimensionless parameters, i.e., the
longitudinal bed slope, So; relative submergence height ðR=DÞ; as-
pect ratio ðδ ¼ W=HÞ; Reynolds number, Re; and Froude number,
Fr on the flow resistance, the variation of friction factor with re-
spect to the parameters are analyzed. For this purpose, the extensive
set of data series was sorted based on increasing bed slope, and
variation patterns of friction factor against selected dimensionless
parameters for different bed slopes were analyzed. The variation
pattern of output (i.e., friction factor) concerning respective dimen-
sionless inputs at different bed slopes is shown in Figs. 1(a–d).
While perceiving one parameter’s effect on the friction factor
for a particular slope, caution was exercised to observe that other
parameters are not varying. This has been done to understand the
trend of variation of the friction factor with considered dimension-
less parameters. Fig. 1(a) shows the variation of friction factor with
relative submergence height ðR=DÞ and it can be seen that for lower
bed slopes, there is not much change in the friction factor with
ðR=DÞ; but for higher slopes, even a slight variation of ðR=DÞ
causes significant variations in the friction factor. For smaller slope
values, there are little variations of the friction factor with aspect
ratio, as shown in Fig. 1(b). However, for higher slope values,
i.e., at So ¼ 0.05 and 0.07, much variation of friction factor with

the aspect ratio is noticed. Similar observations are made for higher
bed-slope values on friction factor, which show strong dependency
on Reynolds number as seen in Fig. 1(c). It is observed that there is
a power-law variation of friction factor with respect to the Froude
number, as seen in Fig. 1(d), where the friction factor increases with
the decrease in Fr, and the variation is observed to be similar for
different values of longitudinal bed slope.

Figs. 1(a–d) show the nonlinear variation of friction factor with
respect to the influencing parameters for different values of bed
slope, which is another influencing parameter. An extensive set
of data has facilitated the analysis to observe the effect of various
parameters on the friction factor. Thus, based on the preceding ob-
servation, a data-driven soft computing technique having the ability
to analyze the nonlinear and complex relationship between multiple
inputs and a single output was used to provide a reliable model for
predicting flow resistance.

Application of Advanced Soft Computing Techniques

Advanced soft computing techniques based on artificial intelligence
(AI) and machine learning are acquiring importance and being used
in several water resources engineering fields for hydrological and
hydraulic investigations. Shamshirband et al. (2020) used machine
learning models for predicting a standardized streamflow index for
hydrological drought studies. Fotovatikhah et al. (2018) presented a
comprehensive survey about applying computational intelligence-
based methods in flood management systems. Gholami et al. (2016)
examined an ANN model in predicting the velocity and surface pro-
file in a 90° open-channel bend. Wu and Chau (2013) compared sev-
eral computing models based on ANN for rainfall prediction. Cheng
et al. (2005) developed an adaptive-network-based fuzzy inference

Fig. 1. Variations of friction factor f with respect to various influential parameters: (a) relative submergence height (R=D); (b) aspect ratio (δ);
(c) Reynolds number (Re); and (d) Froude number (Fr).

© ASCE 04021015-4 J. Hydrol. Eng.
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system (ANFIS) to forecast the long-term discharges reliably for hy-
dropower reservoir management and scheduling. Cheng and Chua
(2004) implemented a data-driven modeling technique for a real-time
flood control management system for reservoirs in China.

ANN Modeling

An artificial neural network is considered a capable modeling tech-
nique, particularly for data sets having nonlinear relationships be-
tween multiple inputs and outputs. ANNs work on analyzing data
sets for identification and training correlative patterns between in-
put and output data pairs. Training is the most important part of
ANN modeling, enabling it to generalize and predict outputs from
new input data sets. In a network structure based on ANN, neurons
are organized in a fully interconnected pattern in three layers: the
input layer, the hidden layers, and the output layer. Neurons present
in the input layer receive data from a data file. Neurons present
in the output layer provide network response to the input data.
Neurons present in the hidden layer perform the data processing by
way of communication with other neurons. Three different layers
form a pattern or network structure to derive a solution to the prob-
lem. The theory says that most functions can be approximated us-
ing a single hidden layer (Ripley 1996). The back-propagation (BP)
training algorithm allows networks to adjust their hidden layers of
neurons when the outcome does not match the desired output. The
interrelation between the layers is an essential factor called weights
for converting the input to impact the output. In an ANN, the
weights are enhanced to limit predefined cost functions that drive
the direction of the search for the optimal solution (Khuntia et al.
2018, 2019). With the implementation of the technique, the net-
work is initially trained, and the target output of every output neu-
ron is limited by specifying the weights and biases through the
learning algorithm. The network learns by analyzing single data
points, attaining a prediction for each record and adjusting the
weights once it creates a wrong prediction. This is a repetitive pro-
cess; therefore, the network moves forward to improve its predic-
tions until any of the stopping criteria have been met. Like other
data-driven modeling approaches, ANNs also have limitations be-
cause the quality of model output is primarily dependent on the
quality of the input data. The implementation of ANNs is time con-
suming, making it computationally expensive; the basic drawback
is that it is not always apparent how they are able to reach a solution,
and due to this they have been often referred to as black boxes. But
ANNs have a main advantage in that they are able to perform multi-
variate nonlinear regression analysis of multiple input data sets hav-
ing complex and nonlinear relationships that are not adaptable for
interpretation by conventional computational means.

ANN modeling is acquiring importance and being used as an
advanced computational technique in several fields of water resour-
ces engineering. Shayya and Sablani (1998), Maier and Dandy
(2000), ASCE Task Committee on Application of Artificial Neural
Networks in Hydrology (2000a, b), Dolling and Varas (2002), Riad
et al. (2004), Samani et al. (2007), and Sahu et al. (2011) discussed
the implementation of ANN modeling for prediction of flow
parameters. The ANN approach at present has become a widely
accepted computational tool in many disciplines, including electri-
cal engineering (Sharma et al. 2017), mechanical engineering
(Parlak et al. 2006), and geology (Yuanyou et al. 1997).

Implementing Artificial Neural Networks
The present study proposes a flow friction law model by utilizing
five input parameters in the network: longitudinal bed slope (So),
relative submergence height ðR=DÞ, aspect ratio (δ), Reynolds
number (Re), and Froude number (Fr), and one output parameter
corresponding to the friction factor, f. Three-layer feed-forward

back-propagation hierarchical networks with different architecture
were designed using the Neural Network Toolbox of the MATLAB
version R2020b platform. Levenberg-Marquardt’s back-propagation
training algorithm trainlm, which performs reasonably well for non-
linear regression, was used to implement ANN. The mean-square
error (MSE) between the modeled and measured values was used
as the performance function. The divide function dividerand was ac-
cessed at the time of training the network, which randomly parti-
tioned the data into training and validation/testing subsets, with
the ratio for training and testing/validation as 70% and 30%, respec-
tively. Thus, out of the total 1,269 series of data sets, 888 were used
as training data, and 381 were used for validation and testing pur-
poses. Different architectures comprising single hidden-layer topol-
ogy with a variation of numbers of neurons in input and hidden layer
were used to assess the sensitivity of the model estimations to differ-
ent combinations of input parameters as well as network structure on
the output parameter corresponding to friction factor. The MAPE,
MAE, MPE, RMSE, PBIAS, KGE, and Id values between the pre-
dicted and the desired outputs were taken as the performance indica-
tors to determine the input combination and network structure with
optimal predictive capability. Table 1 indicates the performance
indicators of the prospective ANN models for overall data sets.
Higher MAPE, MAE, MPE, RMSE, and PBIAS, and lower KGE
and Id values are obtained when excluding any one of the selected
input dimensionless terms. This signifies that each of the five input
dimensionless terms has a significant influence on the friction factor.
Results show that among the ANN models, Network 5-6-1 with all
input combinations gave the best estimation with the MAPE, RMSE,
MAE, MPE, PBIAS, KGE, and Id values as 3.95, 0.004, 0.002,
−0.18, −0.026, 0.997, and 0.997, respectively. Corresponding val-
ues for Networks 5-5-1 and 5-7-1 with all input combination were
obtained as 8.28, 0.006, 0.004, −0.40, −0.370, 0.989, and 0.993,
and 4.84, 0.004, 0.003,−2.63, 1.384, 0.984, and 0.996, respectively.

The network structure with five neurons in the input layer, six
neurons in the hidden layer, and one neuron in the output layer
designated 5-6-1 is observed to provide the best predictive perfor-
mance because the coefficient of correlation during the training and
testing stages was found to be high with low mean-square error
value compared with that of other tested network structures.

Fig. 2(a) shows the comparison of predicted f versus the target f
at the end of the training, and that the coefficient of determination
(R2) is 0.9975. This indicates that the training of the ANN model
was proper. Fig. 2(b) shows the performance of the ANN model for
f in testing data; the coefficient of determination (R2) is 0.9976.

Validation of ANN Model for Unseen Data
The preceding implementation of the ANN technique used data sets
randomly partitioned into training and validation/testing subsets.
Thus, a profound approach was adopted to check whether the model
can generalize from a training set to previously unseen data and con-
tinues to make reliable predictions. This was examined by evaluating
the proposed ANN model’s performance by dedicating data sets of a
single experiment as unseen data sets for validation/checking while
balance data sets were used for training and testing to determine the
model. Four such combinations of data sets were considered by tak-
ing data sets from 12 out of 13 sets of experimental studies for the
formulation of the ANN model, with all data sets belonging to a sin-
gle set of experiment used each time for validation/checking. The
results in terms of the coefficient of correlation (R) and MSE for ac-
tual and predicted values of the friction factor of a particular set of
experiments obtained for each combination is given in Table 2. Fig. 3
shows mean square error (MSE) versus the number of data sets for f
for all input combination and Network 5-6-1.
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Table 1. Performance parameters of prospective ANN models for distinct input combination and network structures trained with Levenberg-Marquardt
trainlm algorithm

Models with distinct input
combinations of predictors Network MAPE (%) RMSE MAE MPE (%) PBIAS (%) KGE Id

f ¼ fnðR=D;W=H; Fr;Re; SoÞ 5-5-1 8.28 0.006 0.004 −0.40 −0.370 0.989 0.993
5-6-1 3.95 0.004 0.002 −0.18 −0.026 0.997 0.997
5-7-1 4.84 0.004 0.003 −2.63 1.384 0.984 0.996

f ¼ fnðR=D;W=H; Fr;ReÞ 4-4-1 19.71 0.025 0.014 −4.03 0.460 0.921 0.922
4-5-1 22.68 0.029 0.016 −0.64 −2.899 0.893 0.911
4-6-1 18.95 0.024 0.013 −4.43 0.406 0.932 0.930

f ¼ fnðR=D;Fr;Re; SoÞ 4-4-1 9.983 0.011 0.006 −1.51 −0.265 0.936 0.932
4-5-1 12.53 0.012 0.008 −0.61 −0.447 0.935 0.939
4-6-1 9.97 0.011 0.006 −0.88 −0.289 0.925 0.932

f ¼ fnðR=D;W=H;Re; SoÞ 4-4-1 19.59 0.029 0.017 −8.70 3.282 0.878 0.904
4-5-1 19.18 0.031 0.015 −3.19 −1.294 0.868 0.899
4-6-1 24.60 0.034 0.017 −11.80 1.742 0.825 0.885

f ¼ fnðR=D;W=H;Fr; SoÞ 4-4-1 10.86 0.008 0.005 −1.05 −0.711 0.937 0.938
4-5-1 5.83 0.005 0.003 −1.22 0.407 0.934 0.936
4-6-1 10.75 0.008 0.006 2.60 −3.043 0.931 0.938

Fig. 2. Performance of ANN model for f with all input combinations and Network 5-6-1: (a) training stage; and (b) testing stage.

Fig. 3. Mean square error versus the number of data sets for f for all input combination and Network 5-6-1.

Table 2. Performance parameters of the ANNmodel for actual and predicted values of friction factor for validation of data sets taken from a single experiment

Serial No. Data sets used for formulation Data sets for validation
Coefficient of
correlation (R) MSE

1 1,190 data sets from 12 experiments All 79 data sets of Recking (2006) 0.997 8.052 × 10−4
2 1,226 data sets from 12 experiments All 44 data sets of Bogardi and Yen (1939) 0.998 0.188 × 10−4
3 1,233 data sets from 12 experiments All 36 data sets of Paintal (1971) 0.989 0.345 × 10−4
4 1,209 data sets from 12 experiments All 60 data sets of Smart and Jaeggi (1983) 0.979 3.681 × 10−4
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From performance parameters obtained between observed and
predicted values of friction factor for multiple validation data sets
from single experimental sets, it was observed that the proposed
ANN model is capable of generalization from a training set to pre-
viously unseen data and continues to make a reasonably precise
prediction, signifying a qualitative modeling.

Results and Discussion

For comparative evaluation of the present ANN model with pre-
vious models, statistical performance measures in terms of error
indexes such as MAPE, MAE, MPE, RMSE, PBIAS, efficiency
values KGE, and Id were computed using Eqs. (14)–(20). In gen-
eral, the efficiency of any model can be proved when error indexes
and efficiency values are near zero and close to 1, respectively. The
performance of respective models of previous researchers were
evaluated for their respective experimental data sets, while the pro-
posed ANN model was subjected to evaluation for overall com-
bined 1,269 data sets.

Table 3 lists the error indexes and efficiency values calculated
for the present ANN model and the previous models. The perfor-
mance of the proposed ANN model was found to be reasonably
accurate with MAPE ¼ 3.95%, MAE ¼ 0.002, MPE ¼ −0.18%,
RMSE¼ 0.004, PBIAS¼−0.026%, KGE¼ 0.997, and Id ¼ 0.997.
As per statistical analysis, the present ANN model was found to be
better with the lowest values of errors indexes and efficiency values
very close to 1.

The coefficient of determination can also be considered a suitable
statistical performance index to distinguish between the workability
of different models. Fig. 4 plots the coefficient of determination (R2)
for different friction models. As can be observed in Fig. 4, the com-
puted values of R2 for the models of Recking et al. (2008), Recking

(2006), Cao (1985), and Meyer-Peter and Müller (1948) were ob-
tained as 0.753, 0.585, 0.365, and 0.736, respectively, whereas the
proposed ANN model provides better results for a wide range of
data sets with a high R2 value of 0.998. The models by other re-
searchers were evaluated, taking into consideration their respective
experimental observations. The proposed ANNmodel considers the
experimental observation of overall sets of data. Therefore, the pro-
posed model has feasibility over a wider range of data sets.

The preceding analysis provided an overall understanding of the
feasibility of different models. It is expected that the expressions for
friction factor from the literature would result in a large error when
used for individual data sets of other researchers. Therefore, to
understand the acceptability of each model to various individual
data sets, error analysis was carried out using the various expres-
sions of friction factor mentioned in this paper. Such an analysis
would provide a generalized understanding of the viability of each
model. However, to assess the effectiveness of different models to
various data sets, performance analysis was done by computing
PBIAS, RMSE, and MAE for all the individual data sets. Com-
puted values of MAE and RMSE were normalized with respect to
the difference of maximum and minimum values of friction factor f
of each individual data set to make it scale-free for reasonable com-
parison, called a normalized mean absolute error (NMAE) and nor-
malized root-mean-square error (NRMSE), respectively.

Table 4 lists the PBIAS computed for individual data sets
using expression of different models and the proposed ANNmodel.
Results show that for the model suggested by Recking (2006) and
Recking et al. (2008) the friction factors were underestimated and
overestimated by 37.78% and 2.05%, respectively, while the pro-
posed ANN model showed a negligible overestimation by 0.517%
for the same data sets. Similarly, the friction factor according to the
model suggested by Cao (1985) and Meyer-Peter and Müller (1948),

Table 3. Statistical error indexes and efficiency values of different models used for f

Model MAPE (%) RMSE MAE MPE (%) PBIAS (%) KGE Id

Recking et al. (2008) 18.94 0.093 0.063 −5.83 2.05 0.831 0.841
Recking (2006) 32.30 0.302 0.127 −28.45 37.78 −0.418 0.443
Cao (1985) 64.70 0.246 0.181 64.70 −70.92 −0.115 0.654
Meyer-Peter and Müller (1948) 9.67 0.007 0.005 −3.83 3.17 0.830 0.832
ANN model 3.95 0.004 0.002 −0.18 −0.026 0.997 0.997

Fig. 4. Comparison of coefficient of determination from different models for friction factor f.
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when evaluated for their respective experimental data sets, were
found to be overestimated and underestimated by 70.92% and
3.179%, respectively, while the proposed ANN model for the con-
cerned data sets showed an insignificant underestimation and over-
estimation by 0.117% and 1.68%, respectively. The model proposed
by Cao (1985) showed the overestimation of the friction factor in the
range of 60% to 70% for all the individual data sets consistently. The
model by Meyer-Peter and Müller (1948) estimated on both sides,
but was reasonably better with its own data and the data sets of Graf
and Suszka (1987) for which the PBIAS values are 3.179% and
2.233%, respectively. The PBIAS values calculated for the proposed
ANN model varied from −1.978% to 2.138%, which indicate rea-
sonably good performance for all individual data sets. Figs. 5(a
and b) illustrate NRMSE and NMAE values for the individual data
sets for the different friction factor models, where the proposed ANN
model is observed to give negligible error close to zero. The pro-
posed ANN model provided better flow resistance (i.e., friction fac-
tor f) than the other models because the ANN mapped the nonlinear

relationship between the selected influenting flow parameters in
complex flow conditions. This study used a wide range of data com-
prising the ranges of slope from 0.09% to 20%, relative submergence
height from 1.10 to 260, aspect ratio from 1.17 to 100, Reynolds
number from 2.16 × 103 to 1.44 × 106, and Froude number from
0.36 to 5.01. Further studies should be made to incorporate higher
ranges of the parameters with turbulence properties to understand
how the ANN model derived from flume experiments can prove
beneficial for real field problems.

Conclusions

The present study proposed an ANN model to predict flow resis-
tance in an open channel over a movable bed. The following con-
clusions are drawn from the research:
• Awide range of data sets was considered for observing the rela-

tionship between the independent parameters with the dependent

Fig. 5. Error analysis of different data sets: (a) comparison of NMAE of different data sets for studied models and ANNmodel; and (b) comparison of
NRMSE of different data sets for studied models and ANN model.

Table 4. PBIAS values for individual data sets for f

Data sets

Models

Meyer-Peter and
Müller (1948)

Cao
(1985)

Julien
(2002)

Recking
(2006)

Recking et al.
(2008)

ANN
model

Gilbert (1914) 14.07 −69.84 63.25 22.96 31.01 1.632
Cassey (1935) 33.46 −65.45 87.18 34.99 48.82 −1.978
Mavis (1937) 37.96 −60.05 115.41 60.90 79.25 0.468
Yang (1939) 34.01 −66.52 81.65 30.91 42.24 2.138
Bogardi and Yen (1939) 17.88 −68.15 69.82 56.01 57.54 0.753
Meyer-Peter and Müller (1948) 3.17 −71.59 53.48 13.19 25.26 −1.684
Einstein (1955) 10.25 −70.52 33.77 3.56 −1.93 −1.362
Paintal (1971) 11.35 −64.26 91.91 57.59 66.57 −0.087
Smart and Jaeggi (1983) −40.20 −70.23 14.76 1.48 04.19 −0.376
Cao (1985) −56.13 −70.92 50.79 96.49 98.60 0.117
Graf and Suszka (1987) 2.23 −63.39 95.78 69.73 76.94 −0.014
Rickenmann (1990) −49.83 −70.85 22.55 36.70 22.39 −1.011
Recking (2006) −65.68 −62.05 −5.57 37.78 2.05 −0.517

© ASCE 04021015-8 J. Hydrol. Eng.
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parameter. The previous flow resistance models are restricted
to the use of a single dimensionless parameter, i.e., relative sub-
mergence height ðR=DÞ, whereas the proposed ANN model
considers five influencing dimensionless parameters such as
the longitudinal bed slope, So; relative submergence height
ðR=DÞ; aspect ratio (δ); Reynolds number (Re); and Froude
number (Fr) as input parameters for the modeling.

• The trend and pattern of data match with predicted flow re-
sistance, and the capability of prediction via ANN was dem-
onstrated. The primary reason for a high degree of prediction
accuracy lies in efficient nonlinear mapping between the in-
puts and output in ANN. The nonlinear relationship of geo-
metrical, surface, and hydraulic input parameters with flow
resistance in mobile bed channel is difficult to analyze with
traditional prediction methodology. Additionally, the conven-
tional techniques cannot take into account the real-life fac-
tors operating in the system because the interactions between
sediment transport, bedform, and flow properties are very
complicated processes.

• The performance of the ANN model was also shown in terms
of MAE, RMSE, MAPE, PBIAS, KGE, and Id values for over-
all data sets. The results were further verified for individual
data sets of different researchers in terms of statistical param-
eters, i.e., PBIAS, NMAE, and NRMSE. The correlation plots
for different methods show that the ANN model is fitted with
greater accuracy with the coefficient of determination as 0.998,
whereas the same for the models of Recking et al. (2008) and

Meyer-Peter and Müller (1948) were 0.753 and 0.736,
respectively.

• The empirical equations suggested by Recking et al. (2008) and
Meyer-Peter and Müller (1948) were observed to perform well
in specific ranges of experimental conditions only. Compiling
all the influencing geometric and hydraulic parameters, the
ANN provided the best flow resistance value. From the statis-
tical analysis, it can be concluded that the other models do not
efficiently predict the flow resistance as compared to the ANN
model. The proposed ANN model was validated with multiple
sets of unseen data from the same distribution and reasonably
accurate results were obtained. Thus, it can be inferred that the
ANN model is capable of generalization for interpreting infor-
mation different to that of the training data sets and predicting
the output or trends based on what they have previously seen.

• This study uses a wide range of data comprising the ranges of
slope from 0.09% to 20%, relative submergence height from
1.10 to 260, aspect ratio from 1.17 to 100, Reynolds number
from 2.16 × 103 to 1.44 × 106, and Froude number from 0.36
to 5.01. Further studies should be performed to incorporate a
higher range of the parameters of a mobile bed channel to ex-
amine the ability of extrapolation of the network and also to
incorporate the turbulence anisotropy and curvature effects that
could help to understand how the ANN model derived from
flume experiments in bed-load transport conditions can prove
more beneficial for real field problems in case of nonprismatic
meandering channels.

Appendix I. Geometric and Hydraulic Flow Conditions for the Experimental Data Sets

Data sets
Discharge,
Q ðm3=sÞ

Slope,
So (%)

Width
(m)

Depth of
flow (m)

Grain mean
diameter,
D (mm)

Density of
solid particle

Sediment
concentration

(g=m3)

Gilbert (1914) 0.003–0.032 0.34–2.25 0.20–0.59 0.02–0.17 0.51, 3.17, 7.01, 4.94 2.65 315–33,000
Cassey (1935) 0.001–0.099 0.12–0.52 0.40 0.01–0.29 1.0, 2.5 2.65, 2.81 1.6–2,722
Mavis (1937) 0.002–0.078 0.14–1.01 0.89 0.01–0.13 1.4, 2.0, 3.1, 3.7, 4.2 2.66 0.7–2,361.9
Bogardi and Yen (1939) 0.016–0.064 1.04–2.45 0.30–0.82 0.03–0.14 6.8, 9.0, 10.3, 15.2 2.63, 2.61 6.54–1,010
Yang (1939) 0.003–0.069 0.09–0.50 0.39 0.04–0.26 1.4, 2.0, 3.1, 4.4, 6.0, 6.3 2.45, 2.5, 2.64, 2.66, 2.7 0.1–351
Meyer-Peter and
Müller (1948)

0.001–4.613 0.13–2.27 0.15–2.00 0.01–1.09 1.17–28.65 2.66 0.7–2,361

Einstein (1955) 0.074–0.083 1.24–2.58 0.31 0.11–0.14 0.27, 0.94, 1.30 2.65 2,543–52,238
Paintal (1971) 0.02605–0.25484 0.13-1.00 0.91–0.92 0.08–0.21 2.50, 7.95, 22.20 2.65 0.19–348.23
Smart and Jaeggi (1983) 0.005–0.03 3.00–20 0.20 0.02–0.08 2.0, 4.2, 10.5 2.67, 2.68 4,666–830,666
Cao (1985) 0.015–0.250 0.50–9.00 0.60 0.03–0.25 11.5, 2.2, 44.3 2.65, 2.75 9.39–71,103
Graf and Suszuka (1987) 0.040–0.205 0.5–2.5 0.60 0.07–0.26 12.2, 23.5 2.72 1.83–26,66
Rickenmann (1990) 0.01–0.03 7.00–20. 0.20 0.03–0.09 10 2.68 39,333–1,356,000
Recking (2006) 0.006-0.015 1.00–9.00 0.10–0.25 0.01–0.07 2.3, 4.9, 9.0, 12.5 2.6 4,000–99,111

Appendix II. Influencing Parameters for the Experimental Data Sets Undertaken in the Study

Data sets
Slope,
So (%)

Relative submergence

height

�
R
D

�
Aspect ratio,
δðW=HÞ

Froude
number, Fr

Reynold’s
number, Re

Gilbert (1914) 0.34–2.25 4.93–115.75 1.17–33.33 0.72–2.17 12,037–82,939
Cassey (1935) 0.12–0.52 8.70–78.80 1.38–50.00 0.43–0.89 2,161–114,437
Mavis (1937) 0.14–1.01 3.04–11.38 6.3–100.0 0.53–1.21 2,930–80,607
Bogardi and Yen (1939) 1.04–2.45 3.20–9.13 2.17–25.00 0.85–1.58 26,599–100,434
Yang (1939) 0.09–0.50 10.75–71.81 1.51–11.11 0.36–0.83 8,109–100,889
Meyer-Peter and
Müller (1948)

0.13–2.27 5.37–73.01 2.32–8.33 0.38–1.41 3,965–1,439,179

Einstein (1955) 1.24–2.58 48.8–260.0 2.17–2.85 1.61–2.15 151,445–158,619
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Appendix II. (Continued.)

Data sets
Slope,
So (%)

Relative submergence

height

�
R
D

�
Aspect ratio,
δðW=HÞ

Froude
number, Fr

Reynold’s
number, Re

Paintal (1971) 0.13–1.00 4.79–51.30 4.34–14.28 0.51–0.99 27,939–217,096
Smart and Jaeggi (1983) 3–20 2.70–18.27 2.38–10.00 1.32–5.01 21,427–109,396
Cao (1985) 0.5–9.0 1.10–10.97 2.38–16.67 0.78–1.58 25,156–253,508
Graf and Suszuka (1987) 0.5–2.5 3.04–11.38 2.32–8.33 0.77–1.26 60,413–208,195
Rickenmann (1990) 7–20 2.40–4.61 2.32–6.25 1.45–3.76 38,705–108,996
Recking (2006) 1–9 1.50–20.38 2.85–8.33 0.93–1.75 5,159–42,000

Data Availability Statement

All data, models, and code generated or used during the study ap-
pear in the published article. For the data sets used in this article,
please refer to Appendixes I and II.
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